问题
解答题
已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4. ①求数列{an},{bn}的通项公式; ②设Sn为数列{an}的前n项和,求{
③设Cn=
|
答案
①设{an}的公差为d,{bn}的公比为q,则依题意
⇒1+d=q 1+3d=q2 q≠1 q=2 d=1
∴an=1+(n-1)×1=n;
bn=1×2n-1=2n-1.(4分)
②∵sn=
⇒n(n+1) 2
=1 sn
=2(2 n(n+1)
-1 n
).1 n+1
∴Tn=
+1 s1
+…+1 s2 1 sn
=2[(
-1 1
)+(1 2
-1 2
)+…+(1 3
-1 n
)]1 n+1
=2(1-
)1 n+1
=
.(8分)2n n+1
③∵Cn=
=n•2n-1 (n+1)(n+2) 2
=n•2n (n+1)(n+2)
-2n+1 n+2
.2n n+1
∴Rn=C1+C2+…+Cn
=(
-22 3
)+(21 2
-23 4
)+…+(22 3
-2n+1 n+2
)2n n+1
=
-1.2n+1 n+2