问题
解答题
已知数列{an}的各项均为正数,其前n项和为Sn,且满足2Sn=an2+an(n∈N*). (Ⅰ)求a1,a2,a3; (Ⅱ)求数列{an}的通项公式; (Ⅲ)若bn=n(
|
答案
(Ⅰ)a1=1,a2=2,a3=3.(3分)
(Ⅱ)2Sn=an2+an,①2Sn-1=an-12+an-1,(n≥2)②(5分)
①-②即得(an-an-1-1)(an+an-1)=0,(6分)
因为an+an-1≠0,所以an-an-1=1,所以an=n(n∈N*)(8分)
(Ⅲ)(Ⅲ)∵bn=n(
)n,1 2
∴Tn=
+2×(1 2
)2+…+n×(1 2
)n,1 2
Tn=(1 2
)2+2×(1 2
)3+…+n×(1 2
)n+1.1 2
两式相减得,
Tn =1 2
+(1 2
)2 +…+(1 2
)n-n×(1 2
)n+11 2
=1-
.2+n 2n+1
所以Tn=2-
.(13分)2+n 2n