问题
解答题
已知数列{an}的前n项和为Sn,Sn+an=2-(
(1)求数列{an}的通项公式; (2)若
|
答案
(1)∵Sn+an=2-(
)n,∴n≥2时,Sn-1+an-1=2-(1 2
)n-11 2
两式相减可得2an-an-1=(
)n,1 2
∴2n+1an-2nan-1=1还
∵n=1时,S1+a1=2-(
)1,∴a1=1 2
,∴22a1=33 4
∴{2n+1an}是以3为首项,1为公差的等差数列,
∴2n+1an=n+2,∴an=
;n+2 2n+1
(2)∵
=cn n+1
,∴cn=an n+2
an=n+1 n+2
×n+1 n+2
=n+2 2n+1
,n+1 2n+1
∴Tn=c1+c2+…+cn=
+2 22
+3 23
+…+4 24
+n 2n
,n+1 2n+1
2Tn=
+2 2
+3 22
+…+4 23
,n+1 2n
两式相减得Tn=
+2 2
+1 22
+…1 23
-1 2n
=n+1 2n+1
+1 2
+1 2
+…+1 22
-1 2n n+1 2n+1
=
+1 2
-
(1-1 2
)1 2n 1- 1 2 n+1 2n+1
=
-3 2
.2+n 2n+1