问题
解答题
已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn. (Ⅰ)设Sk=2550,求a和k的值; (Ⅱ)设bn=
|
答案
(Ⅰ)由已知得a1=a-1,a2=4,a3=2a,又a1+a3=2a2,
∴(a-1)+2a=8,即a=3.(2分)
∴a1=2,公差d=a2-a1=2.
由Sk=ka1+
d,得(4分)k(k-1) 2
2k+
×2=2550k(k-1) 2
即k2+k-2550=0.解得k=50或k=-51(舍去).
∴a=3,k=50.(6分)
(Ⅱ)由Sn=na1+
d,得m(n-1) 2
Sn=2n+
×2=n2+n(8分)n(n-1) 2
∴bn=
=n+1(9分)Sn n
∴{bn}是等差数列.
则b3+b7+b11+…+b4n-1=(3+1)+(7+1)+(11+1)+…+(4n-1+1)
=(3+7+11+…+4n-1)+n
=
+n(3+4n-1)n 2
=
+n(11分)(4n+2)n 2
∴b3+b7+b11+…+b4n-1=2n2+2n(12分)