问题 解答题
设等比数列{an}的前n项和为Sn,已知an+1=2Sn +2(n∈N*)
(I)求数列{an}的通项公式;
(Ⅱ)求数列{
n+1
2an
}的前n项和Tn
答案

(I)由an+1=2Sn +2(n∈N*)可得an=2sn-1+2(n≥2)

两式相减可得,an+1-an=2an

即an+1=3an(n≥2)

又∵a2=2a1+2,且数列{an}为等比数列

∴a2=3a1

则2a1+2=3a1

∴a1=2

an=2•3n-1

(II)由(I)知,an=2•3n-1

n+1
2an
=
n+1
4•3n-1

Tn=

2
4•30
+
3
4•31
+
4
4•32
+…+
n+1
4•3n-1

1
3
Tn=
2
4•31
+
3
4•32
+…+
n
4•3n-1
+
n+1
4•3n

两式相减可得,

2
3
Tn=
2
4•30
+
1
4•3
+
1
4•32
+…+
1
4•3n-1
-
n+1
4•3n

=

1
2
+
1
4
×
1
3
(1-
1
3n-1
)
1-
1
3
-
n+1
4•3n
=
5
8
-
2n+5
8•3n

多项选择题
填空题