问题
选择题
等差数列{an}中,已知an=3n-1,若数列{
|
答案
∵an=3n-1,
∴
=1 anan+1
=1 (3n-1)(3n+2)
(1 3
-1 3n-1
),1 3n+2
∵数列{
}的前n项和为1 anan+1
,4 25
∴Sn=
(1 3
-1 2
)+1 5
(1 3
-1 5
)+1 8
(1 3
-1 8
)+…+1 11
(1 3
-1 3n-1
)1 3n+2
=
(1 3
-1 2
)=1 3n+2
,4 25
解得n=16.
故选D.