问题
填空题
已知数列{an}的前4项和等于4,设前n项和为Sn,且n≥2时,an=
|
答案
∵n≥2时,an=sn-sn-1,又an=
( 1 2
+sn
)sn-1
∴sn-sn-1=
(1 2
+ sn
)sn-1
∴
-sn
=sn-1 1 2
∴{
}是等差数列,公差为sn 1 2
∴
=s10
+ 6×s4
=2+3=51 2
∴s10=25
答案为:25
已知数列{an}的前4项和等于4,设前n项和为Sn,且n≥2时,an=
|
∵n≥2时,an=sn-sn-1,又an=
( 1 2
+sn
)sn-1
∴sn-sn-1=
(1 2
+ sn
)sn-1
∴
-sn
=sn-1 1 2
∴{
}是等差数列,公差为sn 1 2
∴
=s10
+ 6×s4
=2+3=51 2
∴s10=25
答案为:25