问题
解答题
设数列 {an}的前n项和为Sn,且 Sn=2an-1(n∈N*). (I)求数列{an}的通项公式; (Ⅱ)设数列 {nan}的前n项和为Tn,对任意 n∈N*,比较
|
答案
(Ⅰ)由Sn=2an-1得Sn+1=2an+1-1,相减得:an+1=2an+1-2an,∴
=2an+1 an
又S1=2a1-1∴a1=2a1-1,a1=1∴an=2n-1(5分)
(Ⅱ)Tn=1•2n+2•21+3•22+…+(n-1)•2n-2+n•2n-1①
2Tn=1•2+2•22+…+(n-2)•2n-2+(n-1)•2n-1+n•2n②
①-②得-T=1+2+22+…+2n-2+2n-1-n•2n,
则Tn=n•2n-2n+1.(9分)
∴
-Sn=Tn 2
-(2n-1)=( n-3)•2n-1+n•2n-2n+1 2 3 2
∴当n=1时,
-S1 =-T1 2
<0,当n=2时,1 2
-S2=-T2 2
<01 2
即当n=1或2时,
-Sn<0,Tn 2
<SnTn 2
当n>2时,
-Sn>0,Tn 2
>Sn(13分)Tn 2