问题 填空题
1
2•4
+
1
3•5
+
1
4•6
+…+
1
(n+1)(n+3)
=______.
答案

数列的通项an=

1
(n+1)(n+3)
=
1
2
1
n+1
-
1
n+3
),

1
2•4
+
1
3•5
+
1
4•6
+…+
1
(n+1)(n+3)
=
1
2
1
2
-
1
4
+
1
3
-
1
5
+
1
4
-
1
6
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2
+
1
n+1
-
1
n+3

=

1
2
(
1
2
+
1
3
-
1
n+2
-
1
n+3
),

故答案为:

1
2
(
1
2
+
1
3
-
1
n+2
-
1
n+3
).

单项选择题
单项选择题