问题 填空题

已知数列{an}满足a1=1,a2=2,对于任意的正整数n都有an-an+1≠1,anan+1an+2=an+an+1+an+2,则S2012=______.

答案

依题意可知,anan+1an+2=an+an+1+an+2

an+1an+2an+3=an+1+an+2+an+3

两式相减得an+1an+2(an+3-an)=an+3-an

∵an+1an+2≠1,

∴an+3-an=0,即an+3=an

∴数列{an}是以3为周期的数列,

∵a1a2a3=a1+a2+a3,∴a3=3

∴S2012=670×(1+2+3)+1+2=4023

故答案为:4023.

解答题
单项选择题