问题 填空题
数列{an}中,a1=1,当n≥2时,an(3-
x
)n
的二项展开式中x的系数,设bn=
3n
an
Tn
为数列{bn}的前n项和,则an=______,T99=______.
答案

(3-

x
)n的二项展开式的通项公式为Tr+1=
Crn
(-1)r•3n-r(
x
)
r

令r=2,则T3=

C2n
3n-2x,

∴当n≥2时,an=

n(n-1)
2
•3n-2

∴an=

1,n=1
n(n-1)
2
•3n-2,n≥2

又bn=

3n
an
,数列{bn}的前n项和为Tn

∴当n≥2时,bn=

3n
3n-2
n(n-1)
2
=
18
n(n-1)
=18(
1
n-1
-
1
n
),又b1=3,

∴T99=3+18[(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
98
-
1
99
)]

=3+18(1-

1
99

=3+

196
11

=

229
11

故答案为:

1,n=1
n(n-1)
2
•3n-2,n≥2
229
11

选择题
单项选择题