问题
填空题
数列{an}中,a1=1,当n≥2时,an是(3-
|
答案
设(3-
)n的二项展开式的通项公式为Tr+1=x
(-1)r•3n-r•(C rn
)r,x
令r=2,则T3=
3n-2x,C 2n
∴当n≥2时,an=
•3n-2,n(n-1) 2
∴an=1,n=1
•3n-2,n≥2n(n-1) 2
又bn=
,数列{bn}的前n项和为Tn,3n an
∴当n≥2时,bn=
=3n 3n-2• n(n-1) 2
=18(18 n(n-1)
-1 n-1
),又b1=3,1 n
∴T99=3+18[(1-
)+(1 2
-1 2
)+…+(1 3
-1 98
)]1 99
=3+18(1-
)1 99
=3+196 11
=
.229 11
故答案为:
;1,n=1
•3n-2,n≥2n(n-1) 2
.229 11