定义:数列{an}的前n项的“均倒数”为
(1)求数列{an}的通项公式; (2)已知bn=tan(t>0),数列{bn}的前n项和Sn,求
(3)已知cn=(
|
(1)由题意可得,Sn=a1+a2+…+an=n(n+2)
当n≥2时,an=Sn-Sn-1=n(n+2)-(n-1)(n+1)=2n+1
而a1=S1=3适合上式
∴an=2n+1
(2)由(1)可得,bn=tan=t(2n+1)
∴
=bn+1 bn
=t2且,b1=t3t2n+3 t2n+1
∴{bn}是以t3为首项,t2为公比的等比数列
当t=1时,Sn=nlim n→∞
=Sn+1 Sn
=1n+1 n
当t≠1时,Sn=
,t3(1-t2n) 1-t2
=Sn+1 Sn 1-t2n+2 1-t2n
若0<t<1,lim n→∞
=Sn+1 Sn lim n→∞
=11-t2n+2 1-t2n
若t>1,lim n→∞
=Sn+1 Sn lim n→∞ 1-t2n+2 1-t2n lim n→∞
=t2
- t21 t2n
-11 t2n
(3)由(1)可得,an•cn=((2n+1)•(
)n4 5
令D(n)=(2n+1)•(
)n,若D(n)最大4 5
则(2n+1)•(
)n≥(2n+3)•(4 5
)n+14 5 (2n+1)•(
)n≥(2n-1)•(4 5
)n-14 5
∴2n+1≥ 4(2n+3) 5
≥2n-14(2n+1) 5
∴
≤n≤7 2 9 2
∵n∈N*∴n=4,此时D(4)=9• (
)4最大4 5