问题
解答题
已知正项数列{an}的前n项和为Sn,且an和Sn满足:4Sn=(an+1)2(n=1,2,3…), (1)求{an}的通项公式; (2)设bn=
(3)在(2)的条件下,对任意n∈N*,Tn>
|
答案
(1)∵4Sn=(an+1)2,①
∴4Sn-1=(an-1+1)2(n≥2),②
①-②得
4(Sn-Sn-1)=(an+1)2-(an-1+1)2.
∴4an=(an+1)2-(an-1+1)2.
化简得(an+an-1)•(an-an-1-2)=0.
∵an>0,∴an-an-1=2(n≥2).
∴{an}是以1为首项,2为公差的等差数列.
∴an=1+(n-1)•2=2n-1.
(2)bn=
=1 an•an+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
).1 2n+1
∴Tn=
[(1-1 2
)+(1 3
-1 3
)+…+(1 5
-1 2n-1
)]1 2n+1
=
(1-1 2
)=1 2n+1
.n 2n+1
(3)由(2)知Tn=
(1-1 2
),1 2n+1
Tn+1-Tn=
(1-1 2
)-1 2n+3
(1-1 2
)1 2n+1
=
(1 2
-1 2n+1
)>0.1 2n+3
∴数列{Tn}是递增数列.
∴[Tn]min=T1=
.1 3
∴
<m 23
,1 3
∴m<
.23 3
∴整数m的最大值是7.