问题
解答题
已知数列{an}满足:
(1)求a2011 (2)若bn=anan+1,Sn为数列{bn}的前b项和,存在正整数b,使得Sn>λ-
|
答案
(1)
+1 a1
+1 a2
+…+1 a3
=201121 a2011
+1 a1
+1 a2
+…+1 a3
=201021 a2010
两式相减得
=20112-20102=4021⇒a2011=1 a2011 1 4021
(2)
+1 a1
+1 a2
+…+1 a3
=n21 an
+1 a1
+1 a2
+…+1 a3
=(n+1)21 an+1
两式相减得
=n2-(n-1)2=2n-1⇒an=1 an
(n≥2)1 2n-1
当n=1时,a1=1也满足上式∴an=
(n≥1)1 2n-1
bn=anan+1=
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)1 2n+1
Sn=
[(1-1 2
)+(1 3
-1 3
)+…+(1 5
-1 2n-1
)]=1 2n+1
(1-1 2
)1 2n+1
存在正整数b,使得Sn>λ-
,即Sn的最大值大于λ-1 2 1 2
而Sn=
(1-1 2
)<1 2n+1 1 2
∴
>λ-1 2
,即λ<11 2