问题 解答题
已知数列{an}满足:
1
a1
+
1
a2
+
1
a3
+…+
1
an
=n2(n≥1,n∈N+),
(1)求a2011
(2)若bn=anan+1,Sn为数列{bn}的前b项和,存在正整数b,使得Sn>λ-
1
2
,求实数λ的取值范围.
答案

(1)

1
a1
+
1
a2
+
1
a3
+…+
1
a2011
=20112

1
a1
+
1
a2
+
1
a3
+…+
1
a2010
=20102

两式相减得

1
a2011
=20112-20102=4021⇒a2011=
1
4021

(2)

1
a1
+
1
a2
+
1
a3
+…+
1
an
=n2

1
a1
+
1
a2
+
1
a3
+…+
1
an+1
=(n+1)2

两式相减得

1
an
=n2-(n-1)2=2n-1⇒an=
1
2n-1
(n≥2)

当n=1时,a1=1也满足上式∴an=

1
2n-1
(n≥1)

bn=anan+1=

1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1

Sn=

1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]=
1
2
(1-
1
2n+1

存在正整数b,使得Sn>λ-

1
2
,即Sn的最大值大于λ-
1
2

而Sn=

1
2
(1-
1
2n+1
)<
1
2

1
2
>λ-
1
2
,即λ<1

单项选择题
单项选择题