问题 填空题
已知数列{an},满足a1=1,
1
an+1
=
1
an
+1
,Sn是数列{anan+1}的前n项和,则S2011=______.
答案

a1=1,

1
an+1
=
1
an
+1,

{

1
an
}是以1为首项以1为公差的等差数列

根据等差数列的通项公式可得,

1
an
=n即an=
1
n

anan+1=

1
n(n+1)
=
1
n
-
1
n+1

S2011=1-

1
2
+
1
2
-
1
3
+…+
1
2011
-
1
2012

=1-

1
2012
=
2011
2012

故答案为:

2011
2012

单项选择题
单项选择题 A1/A2型题