问题
解答题
已知Sn是数列{an}的前n项和,且Sn=n2(n∈N*). (1)求{an}的通项公式; (2)令bn=
|
答案
(1)当n=1时,S1=12=1,
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
又n=1时,a1=2-1=1,满足通项公式,
∴此数列为等差数列,其通项公式为an=2n-1,
(2)证明:bn=
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)1 2n+1
∴Tn=b1+b2+b3+…+bn=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)=1 2n+1
(1-1 2
)<1 2n+1 1 2