问题
填空题
在数列{an}中,a1=1,a2=2,且an+2=an+1+(-1)n(n∈N*),Sn为数列{an}的前n项和,则S100=______.
答案
奇数项:a2k+1=1+(-1)2k-1+a2k-1=a2k-1,
偶数项:a2k+2=1+(-1)2k+a2k=2+a2k
所以奇数项相等,偶数项为等差数列,公差为2
a100=a2+49×2=100
S100=50×a1+50×(a1+a100)×
=50+50(2+100)=2600.1 2
故答案为:2600.