数列{an}满足的前n项和Sn=2n-an,n∈N*
(1)计算数列{an}的前4项;
(2)猜想an的表达式,并证明;
(3)求数列{n•an}的前n项和Tn.
(1)计算得:a1=1,a2=
,a3=3 2
,a4=7 4
.(3分)15 8
(2)∵sn=2n-an当n≥2时
∴sn-1=2(n-1)-an-1两式相减可得:an=2-an+an-1即:
∵a n=
an-1+1⇒a n-2=1 2
(an-1-2)1 2
所以,数列{an-2}是首项为a1-2=-1公比为
的等比数列1 2
∵a n-2=(-1)•(
)n-1⇒a n=2-(1 2
)n-11 2
即an=
(7分)2n-1 2n-1
当n=1时,a1=1,
∴an=
,2n-1 2n-1
(3)因为n•an=2n-n•(
)n-11 2
设数列{n•(
)n-1}的前n项和为MnMn1 2
=1•(
)0+2•(1 2
)1+3•(1 2
)2+n•(1 2
)n-11 2
Mn1 2
=1•(
)1+2•(1 2
)2+(n-1)•(1 2
)n-1+n•(1 2
)n1 2
两式相减可得:
Mn=(1 2
)0+(1 2
)1+(1 2
)2++(1 2
)n-1-n•(1 2
)n1 2
=
-n•(1-(
)n-11 2 1- 1 2
)n=2-(1 2
)n-n•(1 2
)n1 2
=2-(n+1)•(
)nMn1 2
=4-(n+1)•(
)n+1(12分)1 2