问题 解答题
设数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an
(Ⅱ)求满足
18
17
S2n
Sn
8
7
的所有n的值.
答案

(Ⅰ)由2an+1+Sn=3,得2a2+a1=3,

a1=

3
2
,所以a2=
3
4

由2an+1+Sn=3,2an+Sn-1=3(n≥2)相减,

an+1
an
=
1
2

a2
a1
=
1
2
,所以数列{an}是以
3
2
为首项,

1
2
为公比的等比数列.

因此an=

3
2
•(
1
2
)n-1=3•(
1
2
)n(n∈N*).

(Ⅱ)由题意与(Ⅰ),

18
17
S2n
Sn
=1+(
1
2
)n
8
7

1
17
<(
1
2
)n
1
7

因为

1
17
<(
1
2
)3
1
7
1
17
<(
1
2
)4
1
7

所以n的值为3,4.

填空题
判断题