问题
解答题
已知函数,f(x)=
(I)求证数列{
(II)记Sn=a1a2+a2a3+..anan+1,求Sn. |
答案
(I)由条件得,an+1=
.an 3an+1
∴
=1 an+1
+3⇒1 an
-1 an+1
=3.1 an
∴数列{
}是首项为1 an
=1,公差d=3的等差数列.1 a1
∴
=1+(n-1)×3=3n-2.1 an
故an=
.1 3n-2
(II)∵anan+1=
=1 (3n-2)(3n+1)
(1 3
-1 3n-2
).1 3n+1
∴Sn═a1a2+a2a3+..anan+1
=
[(1-1 3
)+(1 4
-1 4
)+…+(1 7
-1 3n-2
)]1 3n+1
=
(1-1 3
)=1 3n+1
.n 3n+1