问题 解答题
已知函数,f(x)=
x
3x+1
,数列{an}满足a1=1,an+1=f(an)(n∈N*
(I)求证数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+..anan+1,求Sn
答案

(I)由条件得,an+1=

an
3an+1

1
an+1
=
1
an
+3⇒
1
an+1
-
1
an
=3.

∴数列{

1
an
}是首项为
1
a1
=1,公差d=3的等差数列.

1
an
=1+(n-1)×3=3n-2.

故an=

1
3n-2

(II)∵anan+1=

1
(3n-2)(3n+1)
=
1
3
1
3n-2
-
1
3n+1
).

∴Sn═a1a2+a2a3+..anan+1

=

1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]

=

1
3
(1-
1
3n+1
)=
n
3n+1

单项选择题
填空题