问题
解答题
已知数列{an}的前n项和为Sn,a1=1,Sn+1=Sn+2an+1(n∈N*). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)∵Sn+1=Sn+2an+1,∴an+1=2an+1
∴an+1+1=2(an+1)
∵a1=1,∴a1+1=2,∴{an+1}是以2为首项,2为公比的等比数列
∴an+1=2n
∴an=2n-1;
(Ⅱ)bn=
=n•(n an+1
)n,1 2
∴Tn=1×
+2×(1 2
)2+…+n•(1 2
)n①1 2
∴
Tn=1×(1 2
)2+…+(n-1)•(1 2
)n+n•(1 2
)n+1②1 2
①-②可得:
Tn=1 2
+(1 2
)2+…+(1 2
)n-n•(1 2
)n+1=1 2
-n•(
[1-(1 2
)n]1 2 1- 1 2
)n+1=1-(1 2
)n-n•(1 2
)n+11 2
∴Tn=2-(
)n-1-n•(1 2
)n.1 2