问题
填空题
已知数列{an}的前n项和Sn满足Sn=2n+1,则当n≥2时,
|
答案
由Sn=2n+1 得,当n=1时,a1=S1=3,当n≥2时an=Sn-Sn-1=2 n-1∴an=3 n=1 2n-1 n>1
+1 a1
+…+1 a2
=1 an
+1 3
+1 2
+…+1 22
=1 2n-1
+1 3
=
[1-(1 2
)n-1]1 2 1- 1 2
-(4 3
)n-11 2
故答案为:
-(4 3
)n-11 2