问题
解答题
函数f(x)=x3,在等差数列{an}中,a3=7,a1+a2+a3=12,记Sn=f(
(1)求{an}的通项公式和Sn (2)求证Tn<
|
答案
(1)设数列{an}的公差为d,
∵a3=7,a1+a2+a3=12,
∴a1+2d=7,3a1+3d=12
解得a1=1,d=3,∴an=3n-2
∵f(x)=x3
∴Sn=f(
)=an+1=3n+1 (6分)3 an+1
(2)证明:∵bn=anSn=(3n-2)(3n+1)
∴
=1 bn
=1 (3n-2)(3n+1)
(1 3
-1 3n-2
)Tn=1 3n+1
+1 b1
+…+1 b2
=1 bn
(1-1 3
+1 4
-1 4
+…+1 7
-1 3n-2
)1 3n+1
∴Tn=
(1-1 3
)<1 3n+1
(12分)1 3