问题 解答题
函数f(x)=x3,在等差数列{an}中,a3=7,a1+a2+a3=12,记Sn=f(
3an+1
)
,令bn=anSn,数列{bn}的前n项和为Tn
(1)求{an}的通项公式和Sn
(2)求证Tn
1
3
答案

(1)设数列{an}的公差为d,

∵a3=7,a1+a2+a3=12,

∴a1+2d=7,3a1+3d=12

解得a1=1,d=3,∴an=3n-2

∵f(x)=x3

Sn=f(

3an+1
)=an+1=3n+1             (6分)

(2)证明:∵bn=anSn=(3n-2)(3n+1)

1
bn
=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)Tn=
1
b1
+
1
b2
+…+
1
bn
=
1
3
(1-
1
4
+
1
4
-
1
7
+…+
1
3n-2
-
1
3n+1
)

Tn=

1
3
(1-
1
3n+1
)<
1
3
(12分)

选择题
问答题