问题
解答题
设数列{an}是等差数列,{bn}是各项均为正数的等比数列,且a1=b1,a3+b5=21,a5+b3=13, (1)求数列{an},{bn}的通项公式; (2)若数列{
|
答案
(1)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且1+2d+q4=21 1+4d+q2=13
解得d=2,q=2.
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.
(2)
=an bn
.2n-1 2n-1
Sn=1+
+3 21
++5 22
+2n-3 2n-2
,①2n-1 2n-1
∴2Sn=2+3+
++5 2
+2n-3 2n-3
,②2n-1 2n-2
②-①得Sn=2+2+
+2 2
++2 22
-2 2n-2 2n-1 2n-1
=2+2×(1+
+1 2
++1 22
)-1 2n-2 2n-1 2n-1
=2+2×
-1- 1 2n-1 1- 1 2 2n-1 2n-1
=6-
.2n+3 2n-1
Sn-4=2-
,2n+3 2n-1
由Sn-4<0得出2n<2n+3,解得n=1,2,3,
由Sn-4>0得出2n>2n+3,解得n=4,5,6,….
所以当n≤3时Sn<4,当n≥4时Sn>4.