问题
填空题
若数列{an}满足an=
|
答案
∵an=
=1 n(n+1)
-1 n
,1 n+1
∴Sn=1-
+1 2
-1 3
+…+1 4
-1 n 1 n+1
=1-
=1 n+1
,n n+1
故答案为:
.n n+1
若数列{an}满足an=
|
∵an=
=1 n(n+1)
-1 n
,1 n+1
∴Sn=1-
+1 2
-1 3
+…+1 4
-1 n 1 n+1
=1-
=1 n+1
,n n+1
故答案为:
.n n+1