问题
解答题
公差不为零的等差数列{an}中,已知其前n项和为Sn,若S8=S5+45,且a4,a7,a12成等比数列 (Ⅰ)求数列{an}的通项an (Ⅱ)当bn=
|
答案
(Ⅰ)由S8=S5+45得,S8-S5=45,
∴a6+a7+a8=45,即3a7=45,得a7=15,
又∵a72=a4•a12,设公差为d≠0,
∴a1+6d=15 (a1+6d)2=(a1+3d)(a1+11d)
解得
,a1=3 d=2
∴an=2n+1,
(Ⅱ)由(Ⅰ)得Sn=
=n(n+2)n(3+2n+1) 2
∴bn=
=1 n(n+2)
(1 2
-1 n
),1 n+2
Tn=b1+b2+b3+…+bn =
[(1 2
-1 1
)+(1 3
-1 2
)+…+(1 4
-1 n
)]1 n+2 =
(1 2
+1 1
-1 2
-1 n+1
)1 n+2
∴Tn=
-3 4
.2n+3 2(n+1)(n+2)