问题
解答题
已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:
|
答案
(Ⅰ)∵an=2an-1+2n(n≥2,且n∈N*),
∴
=an 2n
+1,即an-1 2n-1
-an 2n
=1(n≥2,且n∈N*),…(3分)an-1 2n-1
所以,数列{
}是等差数列,公差d=1,首项an 2n
,…(5分)1 2
于是
=an 2n
+(n-1)d=1 2
+(n-1)•1=n-1 2
,1 2
∴an=(n-
)•2n.…(7分)1 2
(Ⅱ)∵Sn=
•2+1 2
•22+3 2
•23+…+(n-5 2
)•2n,①1 2
∴2Sn=
•22+1 2
•23+3 2
•24+…+(n-5 2
)•2n+1,②…(9分)1 2
①-②,得-Sn=1+22+23+…+2n-(n-
)•2n+11 2
=2+22+23+…+2n-(n-
)•2n+1-11 2
=
-(n-2(1-2n) 1-2
)•2n+1-11 2
=(3-2n)•2n-3,…(12分)
∴Sn=(2n-3)•2n+3>(2n-3)•2n,
∴
>2n-3.…(14分)Sn 2n