问题 解答题
已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an
an+1
+
an+1
an
,求数列{bn}的前n项和Sn
(Ⅲ)设cn=2n(
an+1
n
-λ)
,若数列{cn}是单调递减数列,求实数λ的取值范围.
答案

(Ⅰ)由题知

a23
=a1a7,设等差数列{an}的公差为d,

(a1+2d)2=a1(a1+6d),

a1d=2d2,∵d≠0

∴a1=2d.                                                  …(1分)

又∵a2=3,

∴a1+d=3a1=2,d=1…(2分)

∴an=n+1.                                                 …(3分)

(Ⅱ)∵bn=

an
an+1
+
an+1
an
=
n+1
n+2
+
n+2
n+1
=2+
1
n+1
-
1
n+2
.            …(4分)

∴Sn=b1+b2+…+bn=(2+

1
2
-
1
3
)+(2+
1
3
-
1
4
)+…+(2+
1
n+1
-
1
n+2
)=2n+
n
2(n+2)
.                          …(6分)

( III)cn=2n

an+1
n
-λ)=2n
n+2
n
-λ),使数列{cn}是单调递减数列,

则cn+1-cn=2n

2(n+3)
n+1
-
n+2
n
-λ)<0对n∈N*都成立    …(7分)

2(n+3)
n+1
-
n+2
n
-λ<0⇒λ>(
2(n+3)
n+1
-
n+2
n
)
max
…(8分)

设f(n)=

2(n+3)
n+1
-
n+2
n

f(n+1)-f(n)=

2(n+4)
n+2
-
n+3
n+1
-
2(n+3)
n+1
+
n+2
n

=

2(n+4)
n+2
+
n+2
n
-
3(n+3)
n+1

=2+

4
n+2
+1+
2
n
-3-
6
n+1

=

2(2-n)
n(n+1)(n+2)
…(9分)

∴f(1)<f(2)=f(3)>f(4)>f(5)>…

当n=2或n=3时,f(n)max=

4
3

(

2(n+3)
n+1
-
n+2
n
)max=
4
3

所以λ>

4
3
.               …(10分)

单项选择题
单项选择题