已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)数列{bn}满足bn=
(Ⅲ)设cn=2n(
|
(Ⅰ)由题知
=a1a7,设等差数列{an}的公差为d,a 23
则(a1+2d)2=a1(a1+6d),
a1d=2d2,∵d≠0
∴a1=2d. …(1分)
又∵a2=3,
∴a1+d=3a1=2,d=1…(2分)
∴an=n+1. …(3分)
(Ⅱ)∵bn=
+an an+1
=an+1 an
+n+1 n+2
=2+n+2 n+1
-1 n+1
. …(4分)1 n+2
∴Sn=b1+b2+…+bn=(2+
-1 2
)+(2+1 3
-1 3
)+…+(2+1 4
-1 n+1
)=2n+1 n+2
. …(6分)n 2(n+2)
( III)cn=2n(
-λ)=2n(an+1 n
-λ),使数列{cn}是单调递减数列,n+2 n
则cn+1-cn=2n(
-2(n+3) n+1
-λ)<0对n∈N*都成立 …(7分)n+2 n
即
-2(n+3) n+1
-λ<0⇒λ>(n+2 n
-2(n+3) n+1
)max…(8分)n+2 n
设f(n)=
-2(n+3) n+1
,n+2 n
f(n+1)-f(n)=
-2(n+4) n+2
-n+3 n+1
+2(n+3) n+1 n+2 n
=
+2(n+4) n+2
-n+2 n 3(n+3) n+1
=2+
+1+4 n+2
-3-2 n 6 n+1
=
…(9分)2(2-n) n(n+1)(n+2)
∴f(1)<f(2)=f(3)>f(4)>f(5)>…
当n=2或n=3时,f(n)max=
,4 3
∴(
-2(n+3) n+1
)max=n+2 n 4 3
所以λ>
. …(10分)4 3