问题
解答题
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+), (1)求数列{an}的通项公式an; (2)若数列bn满足bn=log2(an+2),Tn为数列{
(3)(只理科作)接(2)中的Tn,求证:Tn≥
|
答案
(1)当n∈N+时,Sn=2an-2n,
则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1)
①-②,an=2an-2an-1-2,an=2an-1+2
∴an+2=2(an-1+2),
∴
=2,n=1时 S1=2a1-2,∴a1=2an+2 an-1+2
∴{an+2}是a1+2=4为首项2为公比的等比数列,
∴an+2=4•2n-1=2n+1,
∴an=2n+1-2
(2)证明bn=log2(an+2)=log22n+1=n+1.
∴
=bn an+2
,n+ 2n+1
则Tn=
+2 22
+…+3 23
,n+1 2n+1
∴
Tn=1 2
+2 23
+…+3 24
+n 2n+1
④n+1 2n+2
③-④,
Tn=1 2
+2 22
+1 23
…+1 24
-1 2n+1
=n+1 2n+2
+1 4
-
(1-1 4
)1 2n 1- 1 2 n+1 2n+1
=
+1 4
-1 2
- 1 2n+1 n+1 2n+2
=
-3 4 n+3 2n+2
∴Tn=
-3 2
.n+3 2n+1
(3)n≥2时Tn-Tn-1=-
+n+3 2n+1
=n+2 2n
>0,n+1 2n+1
∴{Tn}为递增数列
∴Tn的最小值是T1=1 2
∴Tn≥1 2