问题 解答题
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),
(1)求数列{an}的通项公式an
(2)若数列bn满足bn=log2(an+2),Tn为数列{
bn
an+2
}的前n项和,求Tn
(3)(只理科作)接(2)中的Tn,求证:Tn
1
2
答案

(1)当n∈N+时,Sn=2an-2n,

则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1)

         ①-②,an=2an-2an-1-2,an=2an-1+2

∴an+2=2(an-1+2),

an+2
an-1+2
=2,n=1时   S1=2a1-2,∴a1=2

∴{an+2}是a1+2=4为首项2为公比的等比数列,

∴an+2=4•2n-1=2n+1

∴an=2n+1-2

(2)证明bn=log2(an+2)=log22n+1=n+1.

bn
an+2
=
n+
2n+1

Tn=

2
22
+
3
23
 +…+
n+1
2n+1

1
2
Tn=
2
23
+
3
24
+…+
n
2n+1
+
n+1
2n+2

③-④,

1
2
Tn=
2
22
+
1
23
+
1
24
…+
1
2n+1
-
n+1
2n+2
=
1
4
+
1
4
(1-
1
2n
)
1-
1
2
n+1
2n+1

=

1
4
+
1
2
-
1
2n+1
n+1
2n+2

=

3
4
-
n+3
2n+2

Tn=

3
2
-
n+3
2n+1

(3)n≥2时Tn-Tn-1=-

n+3
2n+1
+
n+2
2n
=
n+1
2n+1
>0,

∴{Tn}为递增数列

Tn的最小值是T1=

1
2

Tn

1
2

单项选择题 A1/A2型题
判断题