问题
解答题
已知函数f(x)=
(1)求数列{an}的通项公式; (2)记Sn=a1a2+a2a3+…+anan+1,求Sn. |
答案
(1)由已知得,an+1=
,整理得an 3an+1
-1 an+1
=31 an
∴数列{
}是首项,公差的等差数列.1 an
∴
=1+(n-1)×3=3n-2,1 an
故an=
(n∈N*)(6分)1 3n-2
(2)∵anan+1=
=1 (3n-2)(3n+1)
(1 3
-1 3n-2
)1 3n+1
Sn=a1a2+a2a3+…+anan+1=
+1 1×4
+…+1 4×7 1 (3n-2)(3n+1)
=
[(1-1 3
)+(1 4
-1 4
)+…+(1 7
-1 3n-2
)]1 3n+1
=
(1-1 3
)=1 3n+1
.(13分)n 3n+1