问题 解答题
已知函数f(x)=
x
3x+1
,数列an满足a1=1,an+1=f(an)(n∈N*).
(1)求数列{an}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,求Sn
答案

(1)由已知得,an+1=

an
3an+1
,整理得
1
an+1
-
1
an
=3

∴数列{

1
an
}是首项,公差的等差数列.

1
an
=1+(n-1)×3=3n-2,

an=

1
3n-2
(n∈N*)(6分)

(2)∵anan+1=

1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)

Sn=a1a2+a2a3+…+anan+1=

1
1×4
+
1
4×7
+…+
1
(3n-2)(3n+1)

=

1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]

=

1
3
(1-
1
3n+1
)=
n
3n+1
.(13分)

名词解释
问答题