问题
解答题
设数列{an}前n项和Sn,且Sn=2an-2,令bn=log2an (I)试求数列{an}的通项公式; (Ⅱ)设cn=
(Ⅲ)对任意m∈N*,将数列{2bn}中落入区间(am,a2m)内的项的个数记为dm,求数列{dm}的前m项和Tm. |
答案
(I)当n=1时,S1=2a1-2,a1=2,
当n≥2时,an=Sn-Sn-1=(2an-2)-(2an-1-2)=2an-2an-1,所以an=2an-1,数列{an}是以2为为公比的等比数列,且首项a1=2,
通项公式为an=2×2n-1=2n,
(Ⅱ)cn=
=bn an n 2n
Tn=
+1 21
+…2 22
,两边同乘以n 2n
得1 2
Tn=1 2
+1 22
+…2 23
+n-1 2n n 2n+1
两式相减得出
Tn=1 2
+1 21
+…1 22
-1 2n
=1-n 2n+1
-1 2n
=1-n 2n+1 n+2 2n+1
∴Tn=2-n+2 2n
∴Tn<2
(Ⅲ)数列{2bn}中落入区间(am,a2m)内,即am<2bn<a2m,所以2m<2n<22m,2m-1<n<22m-1,
所以数列{2bn}中落入区间(am,a2m)内的项的个数dm=22m-1-2m-1-1,
所以Tm.=
-2(4m-1) 4-1
-m=2m-1 2-1
×22m+1-2m-m+1 3 1 3