问题
填空题
设函数f(x)=x(ex+ae-x),x∈R,是偶函数,则实数a=______.
答案
∵函数f(x)=x(ex+ae-x),x∈R是偶函数,∴f(-x)=f(x),即(-x)•(e-x+aex)=x(ex+ae-x),
整理,得(a+1)•x•(1+e2x)=0.
∵x∈R,1+e2x>0,∴a+1=0,故a=-1.
故答案为-1.
设函数f(x)=x(ex+ae-x),x∈R,是偶函数,则实数a=______.
∵函数f(x)=x(ex+ae-x),x∈R是偶函数,∴f(-x)=f(x),即(-x)•(e-x+aex)=x(ex+ae-x),
整理,得(a+1)•x•(1+e2x)=0.
∵x∈R,1+e2x>0,∴a+1=0,故a=-1.
故答案为-1.