问题 解答题
已知数列{an}满足a1=1,an+1=(1+cos2
2
)an+sin2
2
,n∈N*
(1)求a2,a3,a4,并求出数列{an}的通项公式;
(2)设bn=
a2n
a2n-1
,Sn=b1+b2+…+bn,求证:Sn≤n+
5
3
答案

(1)a2=(1+0)a1+1=2,a3=(1+1)a2+0=4,a4=(1+0)a3+1=5,

∵an+1=

an+1 (n=2m-1,m∈N+
2an(n=2m,m∈N+)
,∴
a2m+1=2a2m
a2m=a2m-1+1

∴a2m+1=2a2m-1+2,∴a2m+1+2=2(a2m-1+2),∴

a2m+1+2
a2m-1+2
=2

∴数列{a2m-1+2}是公比为2的等比数列,∴a2m-1+2=(a1+2)2m-1

∴a2m-1=-2+3•2m-1(m∈N+),a2m=

1
2
a2m+1=-1+3•2m-1(m∈N+),

∴an=

-2+3•2
n+1
2
-1
-1+3•2
n
2
-1
=
-2+3•2
n+1
2
-1
(n为奇数)
-1+3•2
n
2
-1
  (n为偶数)
=
-2+3•2
n-1
2
(n为奇数)
-1+3•2
n-2
2
(n为偶数)

(2)bn=

-1+3•2n-1
-2+3•2n-1
=1+
1
-2+3•2n-1
=1+
1
2(-1+3•2n-2)

①当n=1时,S1=b1=2≤1+

5
3
,不等式成立;

②当n≥2时,-1+3•2n-2≥2,∴0<

1
-1+3•2n-2
<1,

∵0<

1
-1+3•2n-2
1+1
(-1+3•2n-2)+1
=
2
3•2n-2

1
2(-1+3•2n-2)
1
3•2n-2

∴bn<1+

1
3•2n-2
=1+
4
3•2n

∴Sn<2+(1+

4
3•22
)+(1+
4
3•23
)+…+(1+
4
3•2n

=n+1+

4
3
×
1
4
1-
1
2
(1-
1
2n-1
)=n+1+
2
3
(1-
1
2n-1

=n+

5
3
-
4
3•2n
<n+
5
3

由①②知:Sn≤n+

5
3

填空题
单项选择题