问题 解答题
已知数列{an}中,a1=1,an+1=
an
2an+1
(n∈N).
(1)求数列{an}的通项公式an
(2)设:
2
bn
=
1
an
+1
 求数列{bnbn+1}的前n项的和Tn
(3)已知P=(1+b1)(1+b3)(1+b5)…(1+b2n-1),求证:Pn>
2n+1
答案

(1)由an+1=

an
2an+1
得:
1
an+1
-
1
an
=2
1
a1
=1

所以知:数列{

1
an
}是以1为首项,以2为公差的等差数列,

所以 

1
an
=1+2(n-1)=2n-1,得an=
1
2n-1

(2)由

2
bn
=
1
an
+1得:
2
bn
=2n-1+1=2n
,∴bn=
1
n

从而:bnbn+1=

1
n(n+1)

则 Tn=b1b2+b2b3+…+bnbn+1=

1
1×2
+
1
2×3
+…+
1
n(n+1)

=(1-

1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1

=1-

1
n+1
=
n
n+1

(3)已知Pn=(1+b1)(1+b3)(1+b5)…(1+b2n-1)=

2
1
×
4
3
×
6
5
×…×
2n
2n-1

∵(4n)2<(4n)2-1,∴

2n+1
2n
2n
2n-1

设:Tn=

3
2
×
5
4
×…×
2n+1
2n
,则Pn>Tn

从而:Pn2PnTn=

2
1
×
3
2
×
4
3
×…×
2n
2n-1
×
2n+1
2n
=2n+1

故:Pn>

2n+1

选择题
填空题