问题
解答题
在等差数列{an},等比数列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4. (Ⅰ)设Sn为数列{an}的前n项和,求anbn和Sn; (Ⅱ)设Cn=
|
答案
解(I)由题意可得
(4分)1+d=q 1+3d=q2 q≠1
∴q=2 d=1
∴an=1+(n-1)×1=n,bn=2n-1
∴anbn=n•2n-1,Sn=
(4分)n(n+1) 2
(II)∵Cn=
=n•2n-1 (n+1)(n+2) 2
=n•2n (n+1)(n+2)
-2n+1 n+2
(4分)2n n+1
∴Rn=C1+C2+…+Cn
=(
-22 3
)+(21 2
-23 4
)+…+(22 3
-2n+1 n+2
)2n n+1
=
-1(3分)2n+1 n+2