问题 解答题
已知数列{an}为首项a1≠0,公差为d≠0的等差数列,求Sn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
答案

由等差数列的性质可得,

1
anan+1
=
1
d
(
1
an
-
1
an+1
)

∴Sn=

1
d
[(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+…+(
1
an
-
1
an+1
)]=
1
d
(
1
a1
-
1
an+1
)=
1
d
an+1-a1
a1an+1

=

n
a1(a1+nd)

单项选择题
单项选择题