问题
解答题
已知a1=9,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n∈N*,设bn=lg(1+an). (Ⅰ) 证明数列{bn}是等比数列; (Ⅱ) 设cn=nbn,求数列{cn}的前n项和Sn; (Ⅲ) 设dn=
|
答案
(Ⅰ) 证明:由题意知:an+1=
+2an,a 2n
∴an+1+1=(an+1)2,
∵a1=9∴an+1>0,
∴lg(an+1+1)=lg(an+1)2,即bn+1=2bn.
又∵b1=lg(1+a1)=1>0,
∴{bn}是公比为2的等比数列.
(Ⅱ) 由(1)知:bn=b1•2n-1=2n-1,∴cn=n•2n-1.
∴Sn=c1+c2+…+cn=1•20+2•21+3•22+…+n•2n-1①,
∴2Sn=1•21+2•22+3•23+…+(n-1)•2n-1+n•2n②,
∴①-②得,-Sn=1•20+21+22+…+2n-1-n•2n=
-n•2n=2n-1-n•2n,1-2n 1-2
∴S n=n•2n-2n+1.
(Ⅲ)∵an+1=
+2an=an(a 2n
+2)>0,a n
∴
=1 an+1
(1 2
-1 an
),∴1 an+2
=1 an+2
-1 an
,2 an+1
∴dn=
+1 an
-1 an
=2(2 an+1
-1 an
),1 an+1
∴Dn=d1+d2+…+dn=2(
-1 a1
+1 a2
-1 a2
+…1 a3
-1 an
)=2(1 an+1
-1 a1
),1 an+1
又由(1)知:lg(1+an)=2n-1,
∴an+1=102n-1,∴an+1=102n-1,
∴Dn=2(
-1 9
).1 102 n-1