问题 解答题
已知a1=9,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n∈N*,设bn=lg(1+an).
(Ⅰ) 证明数列{bn}是等比数列;
(Ⅱ) 设cn=nbn,求数列{cn}的前n项和Sn
(Ⅲ) 设dn=
1
an
+
1
an+2
,求数列{dn}的前n项和Dn
答案

(Ⅰ) 证明:由题意知:an+1=

a2n
+2an

an+1+1=(an+1)2

∵a1=9∴an+1>0,

lg(an+1+1)=lg(an+1)2,即bn+1=2bn

又∵b1=lg(1+a1)=1>0,

∴{bn}是公比为2的等比数列.

(Ⅱ) 由(1)知:bn=b12n-1=2n-1,∴cn=n•2n-1

∴Sn=c1+c2+…+cn=1•20+2•21+3•22+…+n•2n-1①,

2Sn=1•21+2•22+3•23+…+(n-1)•2n-1+n•2n②,

∴①-②得,-Sn=1•20+21+22+…+2n-1-n•2n=

1-2n
1-2
-n•2n=2n-1-n•2n

S n=n•2n-2n+1

(Ⅲ)∵an+1=

a2n
+2an=an(
a n
+2)>0,

1
an+1
=
1
2
(
1
an
-
1
an+2
),∴
1
an+2
=
1
an
-
2
an+1

dn=

1
an
+
1
an
-
2
an+1
=2(
1
an
-
1
an+1
),

Dn=d1+d2+…+dn=2(

1
a1
-
1
a2
+
1
a2
-
1
a3
+…
1
an
-
1
an+1
)=2(
1
a1
-
1
an+1
),

又由(1)知:lg(1+an)=2n-1

an+1=102n-1,∴an+1=102n-1

Dn=2(

1
9
-
1
102 n-1
).

单项选择题
单项选择题