问题 解答题
已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)
(其中a为常数且a≠0,a≠1,n∈N*
(1)求数列{an}的通项公式;
(2)记bn=nan,求数列{bn}的前n项和Tn
答案

(1)∵Sn=

a
a-1
(an-1),

Sn+1=

a
a-1
(an+1-1),

从而an+1=Sn+1-Sn=

a
a-1
(an+1-an),

∴an+1=a•an

当n=1时,由Sn=

a
a-1
(an-1),得a1=a.

∴数列{an}是以a为首项,a为公比的等比数列,故an=an

(2)由(1)得bn=n•an

Tn=a+2a2+3a3+…+nan

从而aTn=a2+2a3+3a4+…+nan+1

两式相减,得(1-a)Tn=a+a2+a3+…+an-nan+1

∵a≠0,且a≠1,

(1-a)Tn=

a(1-an)
1-a
-nan+1

=

nan+2-(n+1)an+1+a
1-a

从而Tn=

nan+2-(n+1)an+1+a
(1-a)2

判断题
选择题