问题
解答题
已知数列{an}的前n项和Sn满足:Sn=
(1)求数列{an}的通项公式; (2)记bn=nan,求数列{bn}的前n项和Tn. |
答案
(1)∵Sn=
(an-1),a a-1
∴Sn+1=
(an+1-1),a a-1
从而an+1=Sn+1-Sn=
(an+1-an),a a-1
∴an+1=a•an,
当n=1时,由Sn=
(an-1),得a1=a.a a-1
∴数列{an}是以a为首项,a为公比的等比数列,故an=an.
(2)由(1)得bn=n•an,
∴Tn=a+2a2+3a3+…+nan,
从而aTn=a2+2a3+3a4+…+nan+1,
两式相减,得(1-a)Tn=a+a2+a3+…+an-nan+1,
∵a≠0,且a≠1,
∴(1-a)Tn=
-nan+1a(1-an) 1-a
=
,nan+2-(n+1)an+1+a 1-a
从而Tn=
.nan+2-(n+1)an+1+a (1-a)2