数列{an}的通项an=n2(cos2
(1)求Sn; (2)bn=
|
(1)由于cos2
-sin2nπ 3
=cosnπ 3
,an=n2•cos2nπ 3 2nπ 3
故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k)
=(-
+32)+(-12+22 2
+62)+…+[-42+52 2
+(3k)2](3k-2)2+(3k-1)2 2
=
+13 2
+…+31 2
=18k-5 2 k(4+9k) 2
S3k-1=S3k-a3k=
,k(4-9k) 2
S3k-2=S3k-1-a3k-1=
+k(4-9k) 2
=(3k-1)2 2
-k=-1 2
-3k-2 3
,1 6
故Sn=
(k∈N*)-
-n 3 1 6 n=3k-2 (n+1)(1-3n) 6 n=3k-1 n(3n+4) 6 n=3k
(2)bn=
=S3n n•4n
,9n+4 2•4n
Tn=
[1 2
+13 4
++22 42
],9n+4 4n
4Tn=
[13+1 2
++22 4
],9n+4 4n-1
两式相减得3Tn=
[13+1 2
+…+9 4
-9 4n-1
]=9n+4 4n
[13+1 2
-
-9 4 9 4n 1- 1 4
]=8-9n+4 4n
-1 22n-3
,9n 22n+1
故Tn=
-8 3
-1 3•22n-3
.3n 22n+1