问题 解答题
求和:Sn=(x+
1
x
2+(x2+
1
x2
2+…+(xn+
1
xn
2
答案

当x=±1时,

∵(xn+

1
xn
2=4,∴Sn=4n,

当x≠±1时,

∵an=x2n+2+

1
x2n

∴Sn=(x2+x4++x2n)+2n+(

1
x2
+
1
x4
++
1
x2n
)=
x2(x2n-1)
x2-1
+
x-2(1-x-2n)
1-x-2
+2n

=

(x2n-1)(x2n+2+1)
x2n(x2-1)
+2n,

所以当x=±1时,Sn=4n;

当x≠±1时,Sn=

(x2n-1)(x2n+2+1)
x2n(x2-1)
+2n.

单项选择题
单项选择题