问题
解答题
求和:Sn=(x+
|
答案
当x=±1时,
∵(xn+
)2=4,∴Sn=4n,1 xn
当x≠±1时,
∵an=x2n+2+
,1 x2n
∴Sn=(x2+x4++x2n)+2n+(
+1 x2
++1 x4
)=1 x2n
+x2(x2n-1) x2-1
+2nx-2(1-x-2n) 1-x-2
=
+2n,(x2n-1)(x2n+2+1) x2n(x2-1)
所以当x=±1时,Sn=4n;
当x≠±1时,Sn=
+2n.(x2n-1)(x2n+2+1) x2n(x2-1)