问题
解答题
已知数列{an}的前n项和Sn=2n2+n-1,数列{bn}满足b1+3b2+…+(2n-1)bn=(2n-3)•2n+1,
求:数列{anbn}的前n项和Tn.
答案
当n≥2时,an=Sn-Sn-1=4n-1,而a1=2,
∴an=2(n=1) 4n-1(n≥2)
当n≥2时,(2n-1)•bn=(2n-3)•2n+1-(2n-5)•2n=2n(2n-1)
∴bn=2n,而b1=-4,∴bn=-4(n=1) 2n(n≥2)
∴Tn=-8+[22×7+23×11+…+2n(4n-1)]
记S=22×7+23×11+24×15+…+2n(4n-1)①
∴2S=23×7+24×11+25×15++2n(4n-5)+2n+1(4n-1)②
①-②得:
∴-S=28+4(23+24++2n)-2n+1(4n-1)
-S=28+32(2n-1-1)-2n+1(4n-1)=-4+2n+1(5-4n)
∴S=4+2n+1(4n-5)
Tn=2n+1(4n-5)-4