问题 解答题
已知函数f(x)=
ax+b
cx2+1
(a,b,c为常数,a≠0).
(Ⅰ)若c=0时,数列an满足条件:点(n,an)在函数f(x)=
ax+b
cx2+1
的图象上,求an的前n项和Sn
(Ⅱ)在(Ⅰ)的条件下,若a3=7,S4=24,p,q∈N*(p≠q),证明:Sp+q
1
2
(S2p+S2q)

(Ⅲ)若c=1时,f(x)是奇函数,f(1)=1,数列xn满足x1=
1
2
,xn+1=f(xn),求证:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn-xn+1)2
xnxn+1
5
16
答案

(Ⅰ)依条件有f(x)=ax+b.

因为点(n,an)在函数f(x)=ax+b的图象上,所以an=f(n)=an+b.

因为an+1-an=a(n+1)+b-(an+b)=a,

所以an是首项是a1=a+b,公差为d=a的等差数列.(1分)

所以Sn=n(a+b)+

n(n-1)
2
•a=nb+
n(n+1)
2
•a

即数列an的前n项和Sn=nb+

n(n+1)
2
•a.(2分)

(Ⅱ)证明:依条件有

(a+b)+2a=7
4(a+b)+
4×3
2
•a=24
3a+b=7
10a+4b=24
解得
a=2
b=1

所以an=2n+1.

所以Sn=

n(a1+an)
2
=n2+2n.(3分)

因为2Sp+q-(S2p+S2q)=2[(p+q)2+2(p+q)]-(4p2+4p)-(4q2+4q)=-2(p-q)2

又p≠q,所以2Sp+q-(S2p+S2q)<0.

Sp+q

1
2
(S2p+S2q).(5分)

(Ⅲ)依条件f(x)=

ax+b
x2+1

因为f(x)为奇函数,所以f(-x)+f(x)=0.

ax+b
x2+1
+
-ax+b
x2+1
=0.解得b=0.所以f(x)=
ax
x2+1

又f(1)=1,所以a=2.

f(x)=

2x
x2+1
.(6分)

因为xn+1=f(xn),所以xn+1=

2xn
x2n
+1
.所以x1=
1
2
>0
时,有xn+1>0(n∈N*).

xn+1=f(xn)=

2xn
x2n
+1
2xn
2xn
=1,

若xn+1=1,则xn=1.从而x1=1.这与x1=

1
2
矛盾.

所以0<xn+1<1.(8分)

所以xk+1-xk=xk(1-xk)•

1+xk
xk2+1
1
4
1
xk+1+
2
xk+1
-2
1
4
1
2
2
-2
=
2
+1
8

所以

(xk-xk+1)2
xkxk+1
=
xk+1-xk
xkxk+1
(xk+1-xk)<
2
+1
8
(
1
xk
-
1
xk+1
).(10分)

所以

(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
++
(xn+1-xn)2
xnxn+1
2
+1
8
[(
1
x1
-
1
x2
)+(
1
x2
-
1
x3
)++(
1
xn
-
1
xn+1
)]
=
2
+1
8
(
1
x1
-
1
xn+1
)=
2
+1
8
(2-
1
xn+1
)
.(12分)

因为x1=

1
2
,xn+1>xn,所以
1
2
xn+1<1
.所以1<
1
xn+1
<2

所以

(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
++
(xn-xn+1)2
xnxn+1
2
+1
8
(2-1)<
3
2
+1
8
=
5
16
.(14分)

选择题
多项选择题 案例分析题