问题
解答题
数列{an}中,a1=1,a2=4,an=2n-1+λn2+μn,(n∈N*). (Ⅰ)求λ、μ的值; (Ⅱ)设数列{bn}满足:bn=
|
答案
(Ⅰ)根据题意,得
(3分)4=2+4λ+2μ 1=1+λ+μ
解得
(6分)λ=1 μ=-1
(Ⅱ)由(Ⅰ)an=2n-1+n2-n
∴bn=
=1 2n-1+n2-n-2n-1+2n
=1 n2+n
-1 n
(10分)1 n+1
∴Sn=(1-
)+(1 2
-1 2
)++(1 3
-1 n
)=1-1 n+1
=1 n+1
(14分)n n+1