问题
解答题
已知数列{an}的前n项和为Sn,满足an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N* (1)求证Sn=2n-1an (2)设bn=
|
答案
(1)证明:∵an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
∴
-Sn+1 an+1
=2n-1Sn an
令cn=
,则cn+1-cn=2n-1Sn an
利用叠加法可得:cn-c1=20+21+…+2n-2=
=2n-1-11-2n-1 1-2
∵c1=
=1,∴cn=2n-1S1 a1
∴Sn=2n-1an;
(2)由(1)知,Sn+1=2nan+1
两式相减可得an+1=2nan+1-2n-1an
∴bn=
=an an+1
=2(1-2n-1 2n-1
)1 2n
∴Tn=
-2(n 2
+1 2
+…+1 22
)=1 2n
+n-4 2
.1 2n-1