问题 解答题
已知数列{an}的前n项和为Sn,满足an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
(1)求证Sn=2n-1an
(2)设bn=
an
an+1
求数列{bn}的前n项和Tn
答案

(1)证明:∵an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*

Sn+1
an+1
-
Sn
an
=2n-1

cn=

Sn
an
,则cn+1-cn=2n-1

利用叠加法可得:cn-c1=20+21+…+2n-2=

1-2n-1
1-2
=2n-1-1

c1=

S1
a1
=1,∴cn=2n-1

Sn=2n-1an

(2)由(1)知,Sn+1=2nan+1

两式相减可得an+1=2nan+1-2n-1an

bn=

an
an+1
=
2n-1
2n-1
=2(1-
1
2n
)

∴Tn=

n
2
-2(
1
2
+
1
22
+…+
1
2n
)=
n-4
2
+
1
2n-1

问答题 简答题
问答题 简答题