问题
解答题
(文)数列{an}满足an+1=
|
答案
解(1)∵an+1=
an,n+2 n
∴
=an+1 an n+2 n
∵a1=1
∴
=a2 a1
,3 1
=a3 a2
…4 2
=an an-1 n+1 n-1
以上n-1个式子相乘可得,
•a2 a1
…a3 a2
=an an-1
×3 1
×4 2
…5 3
×n-1 n-3
×n n-2 n+1 n-1
∴
=an a1 n(n+1) 1×2
∴an=n(n+1) 2
(2)∵bn=
=1 an
=2(2 n(n+1)
-1 n
)1 n+1
Sn=2(1-
+1 2
-1 2
+…+1 3
-1 n
)=2(1-1 n+1
)=1 n+1 2n n+1