问题
解答题
已知数列{an}的前n项和为Tn=
(I)求{bn}的通项公式; (II)数列{cn}满足cn=an•bn,求数列{cn}的前n项和Sn; (III)若cn≤
|
答案
(I)由Tn=
3 |
2 |
1 |
2 |
1 |
4 |
(II)cn=an•bn=(3n-2)×(
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
两式相减整理得Sn=
2 |
3 |
3n+2 |
3 |
1 |
4 |
(III)cn=an•bn=(3n-2)•(
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
∴当n=1时,c2=c1=
1 |
4 |
当n≥2时,cn+1<cn,即c1=c2>c3>…>cn,
∴当n=1时,cn取最大值是
1 |
4 |
1 |
4 |
1 |
4 |
1 |
4 |
解得:m≥1或m≤-5.