已知函数f(x)=
(Ⅰ)求a1,a2的值; (Ⅱ)求数列{an}的通项公式; (Ⅲ)设bn=an•an+1,求数列{bn}的前n项和Sn,并比较Sn与
|
(Ⅰ)a1=f(1)=
=1 2+1
,a2=f(a1)=f(1 3
)=1 3
=1 3
+12 3
;1 5
(Ⅱ)∵an+1=
,an 2an+1
∴
=1 an+1
=2+2an+1 an 1 an
∴
-1 an+1
=21 an
∵a1=
,∴1 3
=31 a1
∴数列{
}是首项为3,公差为2的等差数列,1 an
∴
=2n+1,1 an
∴an=1 2n+1
(Ⅲ)bn=an•an+1=
=1 (2n+1)(2n+3)
(1 2
-1 2n+1
),1 2n+3
∴Sn=
(1 2
-1 3
+1 5
-1 5
+…+1 7
-1 2n+1
)=1 2n+3 n 6n+9
n=1时,S1=
,1 15
=n 2n+18
,Sn大于1 20
;n 2n+18
n=2时,S2=
,2 21
=n 2n+18
,Sn大于1 11
,n 2n+18
n=3时,S3=
,1 9
=n 2n+18
,Sn小于3 26
;n 2n+18
n=4时,S4=
,4 33
=n 2n+18
,Sn大于2 17
;n 2n+18
猜想n≥4时,Sn大于
;n 2n+18
证明如下:①n=4时,S4=
,4 33
=n 2n+18
,Sn大于2 17
,结论成立;n 2n+18
②假设n=k时,结论成立,即
>k 6k+9
,∴2k>6k-9k 2k+18
n=k+1时,有2k+1+18>2(6k-9)+18>6(k+1)+9,
∴
>k+1 6(k+1)+9
,结论成立k+1 2k+1+18
由①②可知,结论成立.