问题 解答题
已知函数f(x)=
x
2x+1
,数列{an}满足a1=f(1),an+1=f(an)(n∈N*).
(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=an•an+1,求数列{bn}的前n项和Sn,并比较Sn
n
2n+18
答案

(Ⅰ)a1=f(1)=

1
2+1
=
1
3
,a2=f(a1)=f(
1
3
)=
1
3
2
3
+1
=
1
5

(Ⅱ)∵an+1=

an
2an+1

1
an+1
=
2an+1
an
=2+
1
an

1
an+1
-
1
an
=2

∵a1=

1
3
,∴
1
a1
=3

∴数列{

1
an
}是首项为3,公差为2的等差数列,

1
an
=2n+1,

an=

1
2n+1

(Ⅲ)bn=anan+1=

1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
),

Sn=

1
2
(
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n+1
-
1
2n+3
)=
n
6n+9

n=1时,S1=

1
15
n
2n+18
=
1
20
,Sn大于
n
2n+18

n=2时,S2=

2
21
n
2n+18
=
1
11
,Sn大于
n
2n+18

n=3时,S3=

1
9
n
2n+18
=
3
26
,Sn小于
n
2n+18

n=4时,S4=

4
33
n
2n+18
=
2
17
,Sn大于
n
2n+18

猜想n≥4时,Sn大于

n
2n+18

证明如下:①n=4时,S4=

4
33
n
2n+18
=
2
17
,Sn大于
n
2n+18
,结论成立;

②假设n=k时,结论成立,即

k
6k+9
k
2k+18
,∴2k>6k-9

n=k+1时,有2k+1+18>2(6k-9)+18>6(k+1)+9,

k+1
6(k+1)+9
k+1
2k+1+18
,结论成立

由①②可知,结论成立.

读图填空题
单项选择题