问题 解答题
求和W=
C0n
+4
C1n
+7
C2n
+10
C3n
+…+(3n+1)
Cnn
答案

∵an=3n+1为等差数列,∴a0+an=a1+an-1=…,

Ckn
=
Cn-kn
,(运用反序求和方法),

W=

C0n
+4
C1n
+7
C2n
+…+(3n-2)
Cn-1n
+(3n+1)
Cnn
①,

=(3n+1)

Cnn
+(3n-2)
Cn-1n
+(3n-5)
Cn-2n
+…+4
C1n
+
C0n

W=(3n+1)

C0n
+(3n-2)
C1n
+(3n-5)
Cn-2n
+…+4
C1n
+
C0n
②,

①+②得2W=(3n+2)(

C0n
+
C1n
+
C2n
+…+
Cnn
)=(3n+2)×2n

∴W=(3n+2)×2n-1

单项选择题
单项选择题