问题
解答题
已知数列{an}满足:a1=2,an+1=an+
(I)求数列{an}的通项公式an; (II)设bn=
|
答案
(I)∵an+1=an+1 n(n+1)
∴an+1-an=
-1 n 1 n+1
∴a2-a1=1-
,a3-a2=1 2
-1 2
,…,an-an-1=1 3
-1 n-1 1 n
∴an-a1=1-
+1 2
-1 2
+…+1 3
-1 n-1
=1 n n-1 n
∵a1=2,∴an=3-
;1 n
(II)bn=
an=(3n-1)•n 2n
,1 2n
∴Sn=2•
+5•1 2
+…+(3n-1)•1 22
①,1 2n
∴
Sn=2•1 2
+5•1 22
+…+(3n-4)•1 23
+(3n-1)•1 2n
②,1 2n+1
①-②可得
Sn=2•1 2
+3•1 2
+…+3•1 22
-(3n-1)•1 2n
,1 2n+1
∴
Sn=1 2
-3•5 2
-(3n-1)•1 2n
,1 2n+1
∴Sn=5-
-3 2n-1
.3n-1 2n