问题
解答题
已知数列{an}满足:an+1=an+(
(Ⅰ)求数列{an}的通项公式; (Ⅱ)若cn=2n-1(n∈N*),求数列{bn•cn}的前n项和Sn. |
答案
(Ⅰ)∵an+1=an+(
)n+1(n∈N*),且a1=1,1 2
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+(
)2+(1 2
)3+…+(1 2
)n=1+1 n
=
[1-(1 4
)n-1]1 2 1- 1 2
-(3 2
)n.1 2
又∵当n=1时,上式也成立,∴an=
-(3 2
)n(n∈N*).1 2
(Ⅱ)∵bn=
an-1 2
=3 4
[1 2
-(3 2
)n]-1 2
=-3 4
n+1(n∈N*),1 2
又∵cn=2n-1(n∈N*),
∴Sn=b1•c1+b2•c2+…+bn•cn
∴Sn=-(
)2-3×(1 2
)3-5×(1 2
)4-…-(2n-1)×(1 2
)n+1①1 2
∴
Sn=-(1 2
)3-3×(1 2
)4-…-(2n-3)×(1 2
)n+1-(2n-1)×(1 2
)n+2②1 2
①-②得:
Sn=-(1 2
)2-2×(1 2
)3-2×(1 2
)4-…-2×(1 2
)n+1+(2n-1)×(1 2
)n+21 2
=-
-2[(1 4
)3+(1 2
)4+…+(1 2
)n+1]+(2n-1)(1 2
)n+2=-1 2
+3 4 2n+3 2n+2
∴Sn=-
+3 2
.2n+3 2n+1