问题 解答题
已知数列{an}满足:an+1=an+(
1
2
)n+1(n∈N*),且a1=1;设bn=
1
2
an-
3
4

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=2n-1(n∈N*),求数列{bn•cn}的前n项和Sn
答案

(Ⅰ)∵an+1=an+(

1
2
)n+1(n∈N*),且a1=1,

∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1

=1+(

1
2
)2+(
1
2
)3+…+(
1
n
)n=1+
1
4
[1-(
1
2
)
n-1
]
1-
1
2
=
3
2
-(
1
2
)n

又∵当n=1时,上式也成立,∴an=

3
2
-(
1
2
)n(n∈N*).

(Ⅱ)∵bn=

1
2
an-
3
4
=
1
2
[
3
2
-(
1
2
)n]-
3
4
=-
1
2
n+1
(n∈N*),

又∵cn=2n-1(n∈N*)

∴Sn=b1•c1+b2•c2+…+bn•cn

Sn=-(

1
2
)2-3×(
1
2
)3-5×(
1
2
)4-…-(2n-1)×(
1
2
)n+1

1
2
Sn=-(
1
2
)3-3×(
1
2
)4-…-(2n-3)×(
1
2
)n+1-(2n-1)×(
1
2
)n+2

①-②得:

1
2
Sn=-(
1
2
)2-2×(
1
2
)3-2×(
1
2
)4-…-2×(
1
2
)n+1+(2n-1)×(
1
2
)n+2

=-

1
4
-2[(
1
2
)3+(
1
2
)4+…+(
1
2
)n+1]+(2n-1)(
1
2
)n+2=-
3
4
+
2n+3
2n+2

Sn=-

3
2
+
2n+3
2n+1

解答题
多项选择题